140 research outputs found

    MOODS: fast search for position weight matrix matches in DNA sequences

    Get PDF
    Summary: MOODS (MOtif Occurrence Detection Suite) is a software package for matching position weight matrices against DNA sequences. MOODS implements state-of-the-art online matching algorithms, achieving considerably faster scanning speed than with a simple brute-force search. MOODS is written in C++, with bindings for the popular BioPerl and Biopython toolkits. It can easily be adapted for different purposes and integrated into existing workflows. It can also be used as a C++ library

    A Genome-Wide Association Study for Host Resistance to Ostreid Herpesvirus in Pacific Oysters (Crassostrea gigas)

    Get PDF
    Ostreid herpesvirus (OsHV) can cause mass mortality events in Pacific oyster aquaculture. While various factors impact on the severity of outbreaks, it is clear that genetic resistance of the host is an important determinant of mortality levels. This raises the possibility of selective breeding strategies to improve the genetic resistance of farmed oyster stocks, thereby contributing to disease control. Traditional selective breeding can be augmented by use of genetic markers, either via marker-assisted or genomic selection. The aim of the current study was to investigate the genetic architecture of resistance to OsHV in Pacific oyster, to identify genomic regions containing putative resistance genes, and to inform the use of genomics to enhance efforts to breed for resistance. To achieve this, a population of approximate to 1,000 juvenile oysters were experimentally challenged with a virulent form of OsHV, with samples taken from mortalities and survivors for genotyping and qPCR measurement of viral load. The samples were genotyped using a recently-developed SNP array, and the genotype data were used to reconstruct the pedigree. Using these pedigree and genotype data, the first high density linkage map was constructed for Pacific oyster, containing 20,353 SNPs mapped to the ten pairs of chromosomes. Genetic parameters for resistance to OsHV were estimated, indicating a significant but low heritability for the binary trait of survival and also for viral load measures (h2 0.12 - 0.25). A genome-wide association study highlighted a region of linkage group 6 containing a significant QTL affecting host resistance. These results are an important step toward identification of genes underlying resistance to OsHV in oyster, and a step toward applying genomic data to enhance selective breeding for disease resistance in oyster aquaculture.Peer reviewe

    Rethinking Design : A Dialogue on Anti-Racism and Art Activism from a Decolonial Perspective

    Get PDF
    This chapter focuses on feminist anti-racist activism from a decolonial perspective in the field of cultural production. The authors analyze racialized and racist representations in Finland, and propose interventions from a decolonial perspective. We propose a number of strategies in the field of representation to create non-stereotypical and demeaning racist images, in order to challenge and transform racialized representational practices. We analyze our experience of Finland through concepts such as the white savior complex, white fragility and racial illiteracy to grasp the specificity of the ways through which racism is given meaning and acted upon.Peer reviewe

    Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies

    Get PDF
    The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.Peer reviewe

    Limited genetic parallels underlie convergent evolution of quantitative pattern variation in mimetic butterflies

    Get PDF
    Mimetic systems allow us to address the question of whether the same genes control similar phenotypes in different species. Although widespread parallels have been found for major effect loci, much less is known about genes that control quantitative trait variation. In this study, we identify and compare the loci that control subtle changes in the size and shape of forewing pattern elements in twoHeliconiusbutterfly co-mimics. We use quantitative trait locus (QTL) analysis with a multivariate phenotyping approach to map the variation in red pattern elements across the whole forewing surface ofHeliconius eratoandHeliconius melpomene. These results are compared with a QTL analysis of univariate trait changes, and show that our resolution for identifying small effect loci is somewhat improved with the multivariate approach, but also that different loci are detected with these different approaches. QTL likely corresponding to the known patterning geneoptixwere found in both species but otherwise, a remarkably low level of genetic parallelism was found. This lack of similarity indicates that the genetic basis of convergent traits may not be as predictable as assumed from studies that focus solely on Mendelian traits.Peer reviewe

    A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies

    Get PDF
    Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-beta-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-beta-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-beta-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-beta-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.Peer reviewe

    Genotype determination for polymorphisms in linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies with single nucleotide polymorphisms (SNPs) show great promise to identify genetic determinants of complex human traits. In current analyses, genotype calling and imputation of missing genotypes are usually considered as two separated tasks. The genotypes of SNPs are first determined one at a time from allele signal intensities. Then the missing genotypes, i.e., no-calls caused by not perfectly separated signal clouds, are imputed based on the linkage disequilibrium (LD) between multiple SNPs. Although many statistical methods have been developed to improve either genotype calling or imputation of missing genotypes, treating the two steps independently can lead to loss of genetic information.</p> <p>Results</p> <p>We propose a novel genotype calling framework. In this framework, we consider the signal intensities and underlying LD structure of SNPs simultaneously by estimating both cluster parameters and haplotype frequencies. As a result, our new method outperforms some existing algorithms in terms of both call rates and genotyping accuracy. Our studies also suggest that jointly analyzing multiple SNPs in LD provides more accurate estimation of haplotypes than haplotype reconstruction methods that only use called genotypes.</p> <p>Conclusion</p> <p>Our study demonstrates that jointly analyzing signal intensities and LD structure of multiple SNPs is a better way to determine genotypes and estimate LD parameters.</p
    corecore